

【嵌入式 ARM Cortex-M7 及 Azure RTOS 應用開發】

使用 ARM Cortex M7 (STM32H7) 開發板教學

前 10 位報名全系列且繳費加贈 STM32H750 開發板及 ST-Link V2 仿真編程器開發版功能含:液晶顯示、攝像頭、網路、USB、SPI/I2C..等

STM32H7xx 是 Cortex M7 最新及強大的架構,而 Cortex M3/4 則是較早期 ARM MCU 的架構。STM32H7(CM7)與 STM32F1(CM3)、F4(CM4)系列晶片的區別是,STM32H7 比 F1/F4 系列多出了一個 L1 Cache 一級緩存,及 STM32H7 必須要完成合適的 MPU 和 Cache 的配置,這配置在為低速記憶體帶來加速的同時,會為程式設計帶來一些其他問題。本課程將會講解與實作示範如何合適的完成配置 MPU 和 Cache,協助學員明確了解配置過程。

Azure RTOS 是一個由微軟支援的開源嵌入式即時作業系統,提供了免費的開發版供開發者使用,後續可與 Azure 雲端平台緊密整合,同時用於開發各種物聯網應用。核心ThreadX 是一種即時內核,當前優勢為針對各種嵌入式和物聯網應用有高度完善、高度最佳化的解決方案供使用。

Azure RTOS 經過嚴格的測試,通過了工業認證 IEC-61508 SIL 4、醫療認證 IEC-62304 Class C、汽車認證 IEC-61508 ASIL D 和運輸/鐵路認證 EN50128。

工研院產業學院特邀擁有多年實務開發經驗之專業講師進行授課,課程內容強調以業界實務為導向,著重於程式設計實務之演練,除了以教學投影片講解程式設計理論及語法,同時**將於課堂上現場撰寫程式範例,並直接於教學板上執行測試**,讓學員清楚了解如何從無到有,完整的撰寫程式,望能培養學員全方位完整系統開發與符合業界需求之能力。

單元	課程日期	課程名稱			
_	1/10、1/15、1/17、 1/22(三、五)	嵌入式物聯網 ARM Cortex-Mx 系統韌體開發	28		
_	3/5、3/12、3/19 (隔週三)	嵌入式 Azure RTOS ThreadX 即時作業系統移植與開發	21		

❖ 培訓證書:各單元出席率達80%,將由工業技術研究院產業學院核發培訓證書。

本課程規劃「線上同步數位學習」形式,同步線上學習不受地點限制、增進專業能力!

單元一:嵌入式物聯網 ARM Cortex-Mx 系統韌體開發

現今產業越來越多的 AloT 應用需要高效能、功能豐富且高度整合的微控制器。早期的 Cotex M3/M4 等級的 MCU 已經逐漸無法勝任,CM3/4 在高效能、功能豐富且高度整合的應用上也不適用。ST 公司在 2020 年發布的 STM32H7xx 系列的高效能 MCU、並推出 STM32Cube 生態系統和硬體工具可以開發高效能、功能豐富且高度整合的應用程式。

STM32H7的自帶週邊比較之前的任何 STM3 型號功能都要強勁·更換了 ADC、DMA、USART ...等重要週邊設備。如 ADC 換成了 3.6Msps 16 位元分辨率、USART 支援 Baud-Rate 自適應...等等。與之前 STM32F1、F4 系列晶片在週邊的設定技術就有一定程度的不同,因此初學 Cortex Mx 或有經驗的工程師,希望快速進入 AloT 高效能、功能豐富且高度整合的應用設計工程師,首選使用與學習 STM32H7 系列的 MPU 微控制器。

STM32H7/CM7 晶片功能強大,軟體複雜度也相對提高許多,適合用於高效能 Edge AloT 應用或具有大量通信需求的應用:如工業控制、醫療儀器、資料處理和網路通訊產品。

❖ 課程目標:

- 1. 瞭解 Cortex-M7 系列結構及其指令集,及熟悉 Cortex-M7 系列結構之嵌入式程式設計的方法。
- 2. 瞭解 STM32 處理器各個介面開發的原理。
- ❖ 適合對象:熟悉 C & C++ 語言、數位邏輯

(2) Cortex-M Kernel 結構 (3) ARM-Cortex-M 指令集 (4) 基於 Cortex-M 的嵌入式軟體設計:Programmer's Model、System Control、Memory Map、Exceptions、Clocking and Resets、Power Management、 Nested Vectored Interrupt Controller(NVIC)、 Memory Protection Unit(MPU)、Debug ★【LAB1】第一支 ARM-Cortex-M 程式:Coding 完成 Cortex Mx Vector table(Stack、Reset_Handler) 及各種 ARM ASM 範例 ★【LAB2】實作完成「Startup Code to C」實驗 ★【LAB3】Explicate the Startup Code(俗稱 Booting Code) and How to Modify (5) STM32H7 處理器簡介: CPU 架構、記憶體及啟動模式、周邊模組 (6) STM32H7 介面開發-1: GPIO 基本輸入與輸出 ★【LAB4】 GPIO 按鍵及 LED 閃爍實驗(包含講解開發板電路圖及	▽ 廻口到家・ 熱心 し Q C++						
(2) Cortex-M Kernel 結構 (3) ARM-Cortex-M 指令集 (4) 基於 Cortex-M 的嵌入式軟體設計:Programmer's Model、System Control、Memory Map、Exceptions、Clocking and Resets、Power Management、 Nested Vectored Interrupt Controller(NVIC)、 Memory Protection Unit(MPU)、Debug ★【LAB1】第一支 ARM-Cortex-M 程式:Coding 完成 Cortex Mx Vector table(Stack、Reset_Handler) 及各種 ARM ASM 範例 ★【LAB2】實作完成「Startup Code to C」實驗 ★【LAB3】Explicate the Startup Code(俗稱 Booting Code) and How to Modify (5) STM32H7 處理器簡介: CPU 架構、記憶體及啟動模式、周邊模組 (6) STM32H7 介面開發-1: GPIO 基本輸入與輸出 ★【LAB4】 GPIO 按鍵及 LED 閃爍實驗(包含講解開發板電路圖及	序	日期	課程內容				
」	1	114/01/10 (五)	(1) 軟體開發工具(STM32CubeMx/STM32CubeIDE)介紹、安裝與使用 (2) Cortex-M Kernel 結構 (3) ARM-Cortex-M 指令集 (4) 基於 Cortex-M 的嵌入式軟體設計:Programmer's Model、System Control、Memory Map、Exceptions、Clocking and Resets、Power Management、 Nested Vectored Interrupt Controller(NVIC)、 Memory Protection Unit(MPU)、Debug ★【LAB1】第一支 ARM-Cortex-M 程式:Coding 完成 Cortex Mx Vector table(Stack、Reset_Handler)及各種 ARM ASM 範例 ★【LAB2】實作完成「Startup Code to C」實驗 ★【LAB3】Explicate the Startup Code(俗稱 Booting Code) and How to Modify (5) STM32H7 處理器簡介: CPU 架構、記憶體及啟動模式、周邊模組				

2	114/01/15 (三) 09:30-17:30	(1) CM7 韌體撰寫方式介紹: 1. CM7 MCU's Register Access、2. CM7 Standard Peripherals Library
		(2) STM32H7介面開發-2:中斷/NVIC(巢式中斷)、串列介面、RTC/ALARM
		實驗、PLL
		★【基礎 LAB1】:LED 實驗、按鍵輸入實驗、EXTI 中斷(NVIC)實驗、串
		列介面實驗、RTC/ALARM 實驗、PLL Control 實驗
		(1) STM32H7 介面開發-3: SysTick and Delay、Watchdog
	114/01/17	★【基礎 LAB2】: SysTick/Delay 實驗、Watchdog 實驗
3	(五)	(2) STM32H7 進階介面開發-1: DMA/ADC、SD Interface、USB Device
	09:30-17:30	★【進階 LAB1】: DMA/ADC 介面講解與實驗、SD 卡實驗、USB Device
		實驗
	114/01/22	(1) STM32H7 進階介面開發-2: I2C、SPI、TFT/LTDC、DMA2D
4		★【進階 LAB2】:溫濕度 I2C 模組實驗、G-sensor SPI 模組實驗、網路
	(=)	介面實驗(TCP/IP + Web Server+控制板上 IO)、LCD TFT+FATS 檔案
	09:30-17:30	系統實驗

※ 因不可預測之突發因素,主辦單位得保留課程之變更權利。

單元二:嵌入式 Azure RTOS ThreadX 即時作業系統移植與開發

嵌入式 Azure RTOS 是一款適用於深度內嵌應用程式設計的進階即時作業系統,它是一個開源 RTOS · 核心為 ThreadX 即時內核。其優點有提供進階排程、通訊、同步處理、定時器、記憶體管理和中斷管理功能。經過嚴格的測試,通過了工業認證 IEC-61508 SIL 4、醫療認證 IEC-62304 Class C、汽車認證 IEC-61508 ASIL D 和運輸/鐵路認證 EN50128 · 因此本課程中主要使用之 Azure RTOS ThreadX 與 GUIX 皆可用於安全關鍵型系統。

此外,Azure RTOS ThreadX 有許多進階功能:包括其 picokernel™架構、先佔臨界值™排程、事件鏈結、執行分析、™效能計量,以及系統事件追蹤。同時結合其較佳的易於使用性,是內嵌應用程式的理想選擇,種種優勢讓 Azure RTOS ThreadX 即時作業系統可以使用在通信、工業、醫療、汽車電子、運輸/鐵路等等領域。

本課程將 Open Source 之即時內核 Azure RTOS ThreadX 與 ARM Cortex M3 / M4 / M7 作一完美結合,以發揮 ARM-Cortex M3 / M4 / M7 CPU 的特點。

❖ 課程目標:

- 1. 特別增加各種 Azure RTOS ThreadX 實務 LAB Demo,包含多任務程式開發/按鍵輸入/GPIO輸出、任務間通信實驗、串列介面實作、SPI 介面實作及 LCD 控制應用,以適用於業界不同之需求。
- 2. 瞭解 Azure RTOS ThreadX 即時作業系統的工作原理與移植方式。

❖ 適合對象:

- 1. 熟悉 C & C++ 語言、數位邏輯。
- 2. 建議需上過【單元一】嵌入式物聯網 ARM Cortex-Mx 系統韌體開發。

序	日期	課程內容		
1	114/03/05 (三) 09:30-17:30	 (1) Azure RTOS ThreadX 分析及移植:即時作業系統及 Azure RTOS ThreadX 概述、分析及安裝、配置與移植 (2) Threads and stacks、priorities、preemption、Context switches 概念 (3) 內核資料結構與內核調度演算法、Azure RTOS ThreadX 之 Scheduling (4) 系統中斷處理、系統移植方法 ★【LAB】Azure RTOS ThreadX 在 STM32 開發板上的移植、分析移植的關鍵代碼 (5) Azure RTOS ThreadX 應用程式架構 		
2	114/03/12 (三) 09:30-17:30	 (1) 記憶體管理、多任務(ThreadX Tasks)程式開發 (2) ThreadX RTOS 的 Interrupt 與 Application timer (3) Wait Abort 來中斷執行緒掛起 ★【基礎 LAB】多任務程式控制 LED,閃爍時間不同 (4) 使用 counting semaphore 進行 event notification 		
3	(1) 使用 event flags group 同步 ThreadX 的 threads (2) 使用 message queues 進行 IPC(inter-thread communication)通訊 (3) 使用 event-chaining 掛起 ThreadX 中的 multiple objects (4) ThreadX priority inversion solutions ★【串列介面 LAB】串列介面控制應用程式。 ★【SPI 介面 LAB】多任務 Task:一 Task 執行自周邊(例如 I2C 或 S介面讀入數值,藉任務間通信控制另一 Task 之 LED。 ★【進階 LAB】網路控制應用程式。			

※ 因不可預測之突發因素,主辦單位得保留課程之變更權利。

❖講師簡介:江老師

學 歷:中正大學資訊工程所博士班研究、逢甲大學資訊工程研究所畢

專 長:嵌入式系統開發、智慧型嵌入式家庭自動化系統設計、8051 單晶片、多套自動化系統及驅動程式 Driver、WEB-ERP 系統、ERP 系統、生產線自動化系統。

作 品:1. MX6/8 產品開發設計、S3C6410 開發板研發設計、STM32F7/H7 產品設計

- 2.智慧型嵌入式家庭自動化系統
- 3.8051 單晶片於工業機台之自動化系統
- 4.多套自動化系統(群錄自動化)及驅動程式 Driver
- 5.WEB-ERP 系統、多套 ERP 系統
- 6.華映公司生產線自動化系統
- 7.手機遊戲程式(象棋、打磚塊)
- 8.國內第一套網路中文傳呼系統

★自備物品-筆記型電腦★

建議使用 Windows 7 以上、Mac 2011 或更高階的作業軟體。筆記型電腦規格 CPU I5 或同等級以上、硬碟需求容量 256G(含)以上、RAM 8G(含)以上、具 Wifi 或網路連網功能。

【課程辦理資訊】

❖ 上課地點:工研院產業學院 台北學習中心。 <u>實際地點依上課通知為準!</u>

❖ 數位同步: Cisco Webex 線上會議室

❖ 洽詢專線:(02)2370-1111 分機 609 · itri462692@itri.org.tw 林小姐、309 徐小姐。

❖ 課程費用:數位與實體價格一致

方案	一般報名	早鳥優惠(課前三週繳費)	三人以上團報優惠		
單元一(28 hrs)	25,200/人	22,700/人	21,500/人		
單元二(21 hrs)	18,900/人	17,000/人	16,000/人		
全系列優惠(49hr)	原價 44,100 元 · 全系列優惠 37,500/人 (前 10 名繳費加贈 STM32H750 開發板及 ST-Link V2 仿真編程器)				

❖ 系列課程推薦:

課程名稱	單元名稱	時數	課程日期
嵌入式 ARMCortex-M7	嵌入式物聯網 ARM Cortex-Mx 系統韌體 開發	28	1/10、1/15、1/17、1/22 (三、五)
及 Azure RTOS 應用開發	嵌入式 Azure RTOS ThreadX 即時作業系統移植與開發	21	3/5、3/12、3/19 (隔週三)
嵌入式物聯網	嵌入式 Linux 系統實作與程式設計 實務	21	2/8、2/15、2/22(六)
Linux 系統開發 工程師培訓班	嵌入式 Linux 驅動程式實務	21	3/8、3/15、3/22(六)
그개도마시하네서	嵌入式 IoT Linux 網路通訊及多媒 體應用實務	21	4/12、4/19、4/26(六)
嵌入式 FPGA 系統加速應用	FPGA Verilog HDL 數位邏輯電路 設計與周邊控制實戰-使用 Xilinx Vitis/Vivado	28	4/9 · 4/16 · 4/23 · 4/30(<u>=</u>)
程式設計	FPGA 設計與圖像處理實戰 -使用 Vitis/Vivado HLS	28	6/4 × 6/11 × 6/18 × 6/25(☰)
使用 HLS 進行 FPGA 加速應用設計-快速入門 AI 電腦視覺 (Xilinx Vitis/Vivado)		35	4/18、4/25、5/2、5/9、5/16(五)

FAXTO: (02)2381-1000

報 名 表

嵌入式 ARM Cortex-M7 及 Azure RTOS 應用開發

勾選	單元	課程名稱			時數	開課日期
□實體	_	嵌入式物聯網 ARM Cortex-Mx 系統韌體		開發	28	1/10、1/15、1/17、1/22 (三、五)
□實體	_	嵌入式 Azure RTOS	ThreadX 即時作業系	系統移植 21		3/5 \ 3/12 \ 3/19
□數位		與開發			21	(隔週三)
公司全銜		統一系		猵號		
發票地址			傳		真	
參加者姓名		部門	電話	手 機		E-mail
			()			
			()			
			()			
聯 絡 人			()			
──信用卡 (<mark>線上報名)</mark> : 繳費方式選「信用卡」·直到顯示「您已完成報名手續」為止·才確實完成繳費。						
ATM 轉帳 (<mark>線上報名)</mark> :繳費方式選擇「ATM 轉帳」者·系統將給您一組轉帳帳號「銀行代號、轉帳帳號」·但此帳號只						
提供本課程轉帳使用,各別學員轉帳請使用不同轉帳帳號!!轉帳後,寫上您的「公司全銜、課程名稱、姓名、聯絡電話						
│ 」與「收據」回傳。 │ □銀行匯款 <mark>(公司逕行電匯付款)</mark> :土地銀行 工研院分行·帳號 156-005-00002-5(土銀代碼:005)。戸名「財團法人工						
業技術研究院」·請填具「報名表」與「收據」回傳。						
□ 即期支票: 抬頭「財團法人工業技術研究院」,郵寄至: 106 台北市大安區復興南路二段237號4樓。						

- 1、請註明服務機關之完整抬頭,以利開立收據;未註明者,一律開立個人抬頭,恕不接受更換發票之要求。
- 2、若報名者不克參加者,可指派其他人參加,並於開課前一日通知。
- 3、如需取消報名,請於開課前三日以書面傳真至主辦單位並電話確認申請退費事宜。逾期將郵寄講義,恕不退費。

]計畫代號扣款<mark>(工研院同仁)</mark>:工研院員工報名請網路點選「工研人報名」填寫計畫代號後,經主管簽核同意即可。